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ABSTRACT

Here we study the prediction of even and odd numbered sunspot cycles separately, thereby taking
into account the Hale cyclicity of solar magnetism. We first show that the temporal evolution and
shape of all sunspot cycles are extremely well described by a simple parameterized mathematical
expression. We find that the parameters describing even sunspot cycles can be predicted quite
accurately using the sunspot number 41 months prior to sunspot minimum as a precursor. We
find that the parameters of the odd cycles can be best predicted with maximum geomagnetic aa
index close to fall equinox within a 3-year window preceding the sunspot minimum. We use the
found precursors to predict all previous sunspot cycles and evaluate the performance with a cross-
validation methodology, which indicates that each past cycle is very accurately predicted. For the
coming sunspot cycle 25 we predict an amplitude of 171 ± 23 and the end of the cycle in September
2029 ± 1.9 years. We are also able to make a rough prediction for cycle 26 based on the predicted
cycle 25. While the uncertainty for the cycle amplitude is large we estimate that the cycle 26 will
most likely be stronger than cycle 25. These results suggest an increasing trend in solar activity for
the next decades.

1. Introduction

Prediction of the sunspot number has been an everlasting interest in the space science community
since the discovery of the sunspot cycle by Schwabe (1844). Sunspot number is an indirect indicator
of many different solar phenomena, e.g., total and spectral solar radiation (e.g. Krivova et al., 2011;
Fröhlich, 2012), coronal mass ejections (e.g. Richardson and Cane, 2012), solar flares and magnetic
active regions (e.g. Toriumi et al., 2017). Its cyclic variation can even be used as a pacemaker to
time different aspects of solar activity, solar wind and resulting geomagnetic variations (Chapman
et al., 2021; Leamon et al., 2022). Therefore, there is considerable practical interest in predicting
the evolution of future sunspot cycle(s). This is especially true in today’s technological society
where space hazards pose a significant threat, e.g., to satellites, communications and electric grids
on ground (e.g. Lanzerotti, 2001). Another interest for predicting sunspots arises from the relatively
recently recognized influences of variable solar radiation and solar wind activity on Earth’s climate
system (Gray et al., 2010; Ward et al., 2021; Salminen et al., 2020).
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Over the period of about last 100 years a vast array of different methods ranging from statis-
tical methods to intensive physical simulations have been developed for predicting sunspots. As
an unbiased introduction to all of them would be a futile effort here, the interested reader is re-
ferred to several excellent reviews on the subject by Hathaway (2009), Pesnell (2012) and Petrovay
(2020). According to the classic solar dynamo theory poloidal solar magnetic field in the solar min-
imum gets stretched to the toroidal magnetic field of the next cycle, which then produces sunspots
and magnetic active regions that ultimately make up the poloidal field in the next solar minimum
(Parker, 1955; Babcock, 1961; Leighton, 1969; Charbonneau, 2020). Physically motivated solar
cycle predictions are based on numerical modeling of the solar dynamo process and the transport of
magnetic flux on the solar surface (Charbonneau, 2020; Nandy, 2021; Karak, 2023). However, some
of the most successful, yet much simpler prediction methods are based on precursors that serve as
indicators for the strength of the coming solar cycle. The so called polar field precursor methods
have found a good correlation between the magnetic field observed at the solar polar region up to
a few years before the sunspot minimum and the amplitude of the next sunspot cycle (Schatten
et al., 1978; Petrovay, 2020; Kumar et al., 2021, 2022). As the polar field reflects the strength of the
poloidal phase of the solar magnetic field the precursor methods are deeply rooted in the core idea
of the dynamo theory.

Because the polar field has been systematically measured only since 1970s some longer running
proxy measures for the polar field have also been used. The most successful polar field proxies
are based on geomagnetic activity measures close to the solar minimum (e.g. Ohl, 1966; Du et al.,
2012). It has been shown that certain geomagnetic activity indices, e.g., the aa index correlate quite
well with the open solar magnetic flux carried by the solar wind (e.g. Lockwood et al., 1999, 2014).
Close to the solar minimum the geomagnetic activity is dominantly driven by high speed solar
wind streams (e.g. Richardson and Cane, 2012), which emanate from coronal holes that eventually
form the solar polar field in the declining phase of the cycle (Krieger et al., 1973; Bame et al.,
1976). During these times the geomagnetic activity is most directly connected to the polar field
and, thereby acts as a good proxy for the amplitude of the next sunspot cycle.

In accordance with the solar dynamo theory the sunspot cycle prediction methods often consider
only the predictability of the cycle based on the previous cycle. Most of these methods do not typi-
cally take into account the 22-year Hale cycle of solar magnetism, which is well known in the solar
cycle (e.g. Gnevyshev and Ohl, 1948; Takalo and Mursula, 2018; Leamon et al., 2022) and geo-
magnetic phenomena (e.g. Chernosky, 1966; Takalo, 2021; Chapman et al., 2021). However, some
recent studies have considered the even/odd cycle parity in the context of sunspot cycle prediction
(e.g. Du, 2020; Kakad and Kakad, 2021; Penza et al., 2021; Du, 2022b; Nagovitsyn and Ivanov,
2023). Here we study the prediction of sunspot cycles accounting for the 22-year Hale cycle by con-
sidering the differences in the even and odd numbered sunspot cycles. In Section 2 we first present
our data and then in Section 3 proceed to show that the time evolution and shape of all sunspot cy-
cles are extremely well described by a simple parameterized mathematical expression. In Section 4
we discuss the mutual dependencies of the parameters describing the sunspot cycles and in Section
5 we show that the parameters can be predicted using precursors found partly from past sunspot
number values and partly from geomagnetic activity, which is often used as a precursor proxy for
solar polar magnetic field in the sunspot minimum. Most importantly, though, we find that even and
odd sunspot cycles obey different statistics therefore implying Hale cyclicity in their predictability.
Separately these statistical relations are stronger and more significant than those based on combin-
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ing even and odd cycles together. Using these statistics we construct in Section 6 a new method to
separately predict even and odd sunspot cycles and apply it to the coming solar cycle 25. We also
find an interesting connection between consecutive odd-even sunspot cycle pairs, which allows us
to make rough early predictions for cycle 26 as well. In Section 7 we discuss the results and give
our conclusions.

2. Data

In this work we use monthly values of the version 2 Sunspot Number (SSN) obtained from the
SILSO World Data Center (1749-2023). At the time of writing this paper the SSN v2 series covers
time from 1749 to October 2022 therefore covering full sunspot cycles 1-24 and about two years
from the start of sunspot cycle 25. The monthly values of SSN were first smoothed with a 13-month
window, where the first and last month are given a weight of 0.5 and all other months a weight of
1. Using this smoothed SSN curve we identified the times of sunspot minima and maxima.

In addition to the sunspot data we use in this work the geomagnetic aa index. Recently Lockwood
et al. (2018a,b) presented a homogenized version of the aa index, which inter-calibrates the obser-
vations of the different stations used to compose the aa index. They also correct the index for the
secular drift in the location of the auroral oval (due to secular changes in Earth’s magnetic field) in
relation to the observing stations. The homogenized aa index was obtained from the supplementary
data of Lockwood et al. (2018b), which offers the 3-hourly values for years 1868 to 2017.

We first extended this series forward in time from Jan 2018 to Dec 2021 by calculating the
monthly means of the homogenized aa index and by calibrating the raw aa index (obtained from
ISGI: http://isgi.unistra.fr/) against the corresponding homogenized values. The calibration was
found by fitting a regression line to the logarithmic monthly averaged homogenized aa (aaH) and
raw (aa) values using the data between 1980 and 2017 when the aa index is based on the latest pair
of observatories (Hartland in England and Canberra in Australia). The best fit line was

log(aaH) = 1.049(±0.004) × log(aa) − 0.257(±0.011). (1)

The uncertainties of the fit parameters have been indicated in parentheses. Note that this scaling
uses logarithmic values, since in logarithmic scale the residuals of the fit are closely homoscedastic
(constant variance) while in linear scale they display large heteroscedasticity thereby compromising
the basic assumptions of the least-squares fit. The 3-hourly raw aa values since Jan 2018 were then
scaled with Eq. 1 and the resulting data was appended to the homogenized aa index time series.

We also extended the aa index backward in time using the daily magnetic declination based
Ak(D) indices recorded at the Helsinki geomagnetic observatory since 1844 (Nevanlinna, 2004)
and obtained from https://space.fmi.fi/MAGN/K-index/. These values have previously been used
successfully to extend the aa index time series backward from 1868 to 1844 (e.g. Lockwood et al.,
2014).

Unlike Lockwood et al. (2014), who used annual averages, we calibrated here the daily Ak(D)
values against the simultaneous homogenized aa index values by Lockwood et al. (2018b) for the
overlapping time period from 1.1.1868 to 31.12.1879, where the Ak(D) data is rather continuous.
Starting from 1880 the Ak(D) data series has large data gaps. We found that the daily Ak(D) values
can be scaled to the corresponding daily homogenized aa index values by the following equation

log(aaH) = 1.199(±0.012) × log(Ak(D) + 5 nT) − 0.97(±0.04). (2)
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Also here the logarithmic scale ensures homoscedasticity of the fit residuals. The correlation be-
tween the scaled Ak(D) values and the homogenized aa index values is 0.84 indicating a rather
reliable scaling.
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Fig. 1. Annual averages of homogenized aa index (blue), scaled raw aa index (red) (shown since
year 1980) and scaled Helsinki Ak(D) values (shown for years 1844-1879).

Figure 1 shows the annual averages of homogenized aa index (blue), scaled raw aa index (red)
(shown since year 1980) and scaled Helsinki Ak(D) values (shown for years 1844-1879). The
times when the different curves overlap indicate a very good correspondence between the different
datasets. The extended aa index time series is formed by the scaled Ak(D) data from 1844-1867,
by the homogenized aa index from 1868-2017 and by the scaled raw aa index since 2018. For the
purposes of this study we will use monthly averages of the extended aa index composite.

3. Parameterization of the sunspot cycle

Sunspot cycles are often fitted with a parameterized curve (e.g. Stewart and Panofsky, 1938;
Hathaway et al., 1994; Volobuev, 2009). Stewart and Panofsky (1938) showed that the sunspot
cycles could be described roughly by curves of the form c(t − t0)ae−b(t−t0), where a, b, c and t0 are
free parameters. Hathaway et al. (1994) used a slightly modified version

f (t) =
a(t − t0)3

exp((t − t0)2/b2) − c
(3)

and fitted this model curve to sunspot cycles 1-21. They also showed that many of the parameters
correlated rather well with each other thereby offering a possibility to reduce the effective number
of parameters in the curve down to one free parameter. Many studies have since used similar pa-
rameterizations. However, to be useful in predicting the sunspot cycles the parameters of the future
cycle should be predicted by some means. Several studies have found relatively good correlations
between different precursors and the amplitude of sunspot cycle or the maximum SSN during the
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cycle. The parameterizations described above (e.g., Eq. 3) may not be optimal in light of these corre-
lations, because for those the amplitude (maximum) of the sunspot cycle depends on a combination
of several parameters.

Therefore, we formulated a new parameterization for the sunspot curve, where the parameters
are perhaps better interpreted in terms of well known solar cycle properties (amplitude, rise time,
asymmetry etc.). We use here an asymmetric Gaussian curve of form

f (t) = A exp
(
−

(t − B)2

(C × g(t, B))2

)
, (4)

where A is the sunspot cycle maximum, B is the time of the sunspot maximum measured from the
sunspot minimum beginning the cycle (i.e., B is the cycle rise time), C is the time scale of the rising
phase (cf. standard deviation of a Gaussian) and function g(t, B) is defined as

g(t, B) =
{

1, if t ≤ B,
D, if t > B. (5)

Therefore the parameter D appearing in g(t, B) describes the asymmetry of the time scales in the
declining and rising phases. The more positive the D is the longer the declining phase is compared
to the rising phase.

We then fitted the Eq. 4 to the 13-month smoothed SSN of each sunspot cycle separately. Each
cycle was defined from the time of the sunspot minimum to the next minimum. The 4-parameter fit
was done with the non-linear Levenberg-Marquardt optimization implemented in Matlab software.
Although the consecutive sunspot cycles are known to be overlapping (so that the cycle already
starts before the minimum SSN time) the fitting of our parametric model is largely dependent on
the whole cycle and results are not strongly sensitive to the data around sunspot minima. This was
tested either by leaving out up to 1 year of data from the beginning of the cycles or by extending
the previous fitted cycle and subtracting it from the next cycle. In either case the fitted parameter
values remained practically the same.

Figure 2 shows the time series of the 13-month smoothed SSN in black, the 4-parameter model
fits for cycles 1-24 in red and the Hathaway et al. (1994) fit of Eq. 3 in blue. One can see that
the fitted curves describe all the individual cycles reasonably well, although some of the detailed
structure in the SSN cycles cannot be described by a smooth asymmetric Gaussian. Such structures
are for example the very sharp-peaked cycles like cycles 1-4 and 8-11 and the often seen double
peaks (see, e.g., Karak et al. (2018)), which are quite prominent, e.g., in cycles 22-24. However, the
rising and declining phases of each cycle are well captured by the fit and the cycle amplitudes are
quite close to the real cycle amplitudes. The average R2-value of the 4-parameter fit over all cycles
is 0.973, indicating that over 97% of the variability in the SSN cycles is captured by the model
curves. The average root-mean-squared error for all the cycles is 8.7 and there is no statistically
significant difference in this between even and odd numbered sunspot cycles. We also note that for
most cycles the asymmetric Gaussian function used here is very close to the function (Eq. 3) used
by Hathaway et al. (1994). However, in some cycles (3, 4, 8, 10) there is a clear difference with the
asymmetric Gaussian providing a somewhat better fit.
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Fig. 2. Time series of 13-month smoothed sunspot number (black), parameterized fits for each
sunspot cycle (red curves) and the fit by Hathaway et al. (1994) for comparison (blue curves). The
sunspot cycle numbers are indicated on the plot as well. The top panel shows cycles 1-8, middle
panel cycles 9-16 and bottom panel cycles 17-24.

4. Relationships between cycle parameters

Let us next consider the relationships between the fitted values of the four parameters over all cycles.
Figure 3 shows as scatter plot the relationship between parameters C and D−1/2. In the figure the odd
numbered cycles have been indicated with blue dots and even numbered cycles with red squares.
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One can see that all the cycles depict quite a strong correlation between C and D−1/2 and that there
is no significant difference between the odd and even cycles. The correlation coefficient between C
and D−1/2 over all the cycles is 0.94 and it is highly significant (p-value is 10−11). This relationship
indicates that cycles with a steep rising phase (i.e., small C) have a relatively more gradual (i.e.,
large D and small D−1/2) declining phase and vice versa. The correlation in Figure 3 is therefore a
manifestation of the well known property of sunspot cycles that small amplitude cycles tend to be
more symmetric about the sunspot maximum time than large amplitude cycles (Waldmeier, 1968).

For our purposes the tight relationship between C and D allows us to eliminate the parameter D
from the sunspot model curve and thereby reduce the number of free parameters to 3. The parameter
D is therefore replaced in Eqs. 4 and 5 by expression

D = (0.25(±0.05) + 0.226(±0.02) ×C)−2 , (6)

which corresponds to the linear fit (yellow line) in Figure 3.
After replacing D with Eq. 6 we repeated the fitting procedure for each sunspot cycle, but now

using the remaining 3-parameter model. The correlation between C and D−1/2 is so high that the
3-parameter model is roughly equally good as the 4-parameter model in describing each sunspot
cycle. The average R2-value for the 3-parameter model is 0.959 and therefore not much smaller
than 0.973 for the 4-parameter model. Note also that the elimination of D from the model does
not significantly alter the values of the remaining parameters A, B and C. The correlations of the
corresponding parameters of the 4-parameter and 3-parameter fits exceed 0.97.

Figure 4 shows the relationship between the parameter B (time of SSN maximum counted from
SSN minimum in years) and cycle amplitude A. One can see that there is a general anti-correlation
between A and B. This anti-correlation between the cycle rise time and amplitude has been long
known as the Waldmeier effect (Waldmeier, 1935). Here one can see that this anti-correlation is
somewhat stronger (cc = -0.88, p-value = 10−4) in even cycles than in odd cycles (cc = -0.69, p-value
= 0.014). The correlation between A and B found here is clearly higher than, e.g., the correlation
between SSN maximum and cycle rise time found by Karak and Choudhuri (2011) (cc=-0.5). It
therefore appears that the parameters of the fitted SSN model curve indicate the Waldmeier effect
more robustly than the exact SSN data. This is likely because of the sensitivity of the Waldmeier
effect to the of timing and height of the sunspot maximum, which can be difficult to determine if
the cycle has multiple peaks Karak and Choudhuri (2011).

The linear fits to even and odd cycles depicted by the red and blue lines in Figure 4 are given by
equations

Beven = 5.9(±0.4) − 0.013(±0.003) × Aeven (7)
Bodd = 7.2(±1.0) − 0.016(±0.006) × Aodd. (8)

The correlation coefficients and the slopes/intercepts of the best fit regression lines are different in
the even and odd cycles only with a weak statistical significance (the p-values for the differences
exceed 0.12). However, the mean squared errors of the linear fits to the even and odd cycles are
highly significantly different (0.14 for even cycles and 1.01 for odd cycles and the p-value for the
difference is 0.003). This result indicates that the Waldmeier effect is more strongly valid for even
cycles than for odd cycles.
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Fig. 3. Relationship between the C and D−1/2 parameters of the 4-parameter fits. Blue dots (red
squares) indicate even (odd) numbered cycles. The cycle numbers have been further indicated be-
side all points. The yellow line depicts the linear fit to all the cycles having a correlation coefficient
of 0.94 (p-value is 10−11)

Figure 5 shows the relationship between the final parameter C (time scale of rising phase) and
cycle amplitude A. Here one can also see a general anti-correlation, which is yet another manifes-
tation of the Waldmeier effect. Actually, there is also a quite good correlation (cc = 0.91, p-value =
8×10−10) between the B and C parameters, which explains the two manifestations of the Waldmeier
effect. The linear fits to even and odd cycles depicted by the red and blue lines in Figure 4 are given
by equations

Ceven = 3.5(±0.4) − 8(±2) × 10−3 × Aeven (9)
Codd = 4.7(±0.7) − 1.3(±0.4) × 10−2 × Aodd. (10)
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Fig. 4. Relationship between the A and B parameters of the 3-parameter fits. Blue dots (red squares)
indicate even (odd) numbered cycles. The cycle numbers have been further indicated beside all
points. The blue and red lines depict the linear fits to odd and even cycles respectively.

The conclusions about the differences between even and odd cycles are the same as for B vs.
A relation in Figure 4. I.e., the linear relationships or the correlations are only weakly statistically
significantly different, but the difference in the mean squared errors is highly significant (p-value is
0.038).
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Fig. 5. Relationship between the A and C parameters of the 3-parameter fits. Blue dots (red squares)
indicate even (odd) numbered cycles. The cycle numbers have been further indicated beside all
points. The blue and red lines depict the linear fits to odd and even cycles respectively.

Overall the results in Figures 4-5 indicate that the cycle amplitude A could further be used to
reduce the number of parameters in the sunspot cycle fit. Moreover, there are indications that the
accuracies of these fits are significantly different in even and odd cycles.
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5. Precursors for cycle parameters

Based on the above relations we could further reduce the SSN model curve to a one parameter
model. However, each simplification of the model makes it less flexible and decreases the model
accuracy. Therefore it is useful to first consider whether the cycle parameters A, B and C can be
directly predicted by some suitable precursor. Cameron and Schüssler (2007) showed that the solar
activity level three years before the sunspot minimum starting the cycle is a relatively good predictor
for the amplitude of the cycle. This result for sunspot numbers was shown by Petrovay (2020) (his
Figure 6), who found a correlation of 0.8 between maximum sunspot number of the cycle and the
sunspot number taken 3 years before the sunspot minimum that starts the cycle. A correlation of 0.8
implies that only about 62% variability in cycle amplitudes could be explained by the past sunspot
number, thereby offering a rather mediocre accuracy in predicting the coming cycle amplitudes as
also Petrovay (2020) mentions. However, still motivated by this result we calculated in Figure 6 the
correlation coefficient between the cycle amplitude A and the lagged sunspot number as a function
of the time lag in months before the SSN minimum. Unlike in past studies we did the calculation
here separately for even and odd cycles and using the 2nd power of SSN (SSN2), which we found
to produce slightly larger correlations than SSN (the difference, however, is rather small and not
statistically significant).

One can see that for the even cycles the correlation is systematically higher than for the odd
cycles. The difference between even and odd cycles is quite large, but because of the rather low
number of data points (only 12 even and odd cycles) the 95% confidence limits remain rather
large even when the correlation coefficient is high. However, there is a location around the lag of
41 months (about 3.4 years) before sunspot minimum where the correlations do differ from each
other statistically significantly. This lag of optimal correlation is quite close to the 3 years found by
Cameron and Schüssler (2007). Note, however, that the good correlation is not specific to exactly
the optimum of 41 months but is seen over a broad range of lags from 34 to 44 months.

We chose the lag of 41 months for a closer inspection in Figure 7, which displays all the three
parameters A, B and C1/2 as a function of the sunspot number taken 41 months before the sunspot
minimum (SSN(41)). One can see that the SSN(41)2 correlates quite well not only with cycle am-
plitude A, but with all the three parameters in the even cycles. In the odd cycles there is evident
correlation too, but it is clearly much lower than for the even cycles due to the larger scatter. In
particular the SSN(41)2 vs. cycle amplitude A resembles the plot in Figure 6 of Petrovay (2020),
but now reveals a large difference between even and odd cycles. Recently Du (2020) also found
that the sunspot number 39 months before the sunspot minimum is a precursor for the maximum
SSN of the next cycle and this relation is stronger for even cycles. A similar finding was done by
Nagovitsyn and Ivanov (2023).

We shall later discuss the reasons for the better correlation in even cycles but for now we concen-
trate on the fact that SSN(41) can be used as a quite accurate predictor of the three cycle parameters
for the even cycles. For cycle amplitude the correlation coefficient is 0.984 (p-value = 8 × 10−9)
indicating that about 96.9% of the variation in cycle amplitude may be predicted with SSN(41). For
cycle rise time B the correlation is slightly lower -0.86 (p-value = 0.0003) and for C1/2 (time scale
of rising phase) the correlation is -0.89 (p-value = 10−4).

The linear fits to the even cycles indicated by the yellow lines in Figure 7 are given by equations

Aeven = 88(±6) + 0.0103(±0.0006) × SSN(41)2, (11)
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Beven = 4.8(±0.3) − 1.3(±0.3) × 10−4 × SSN(41)2, (12)

Ceven =
(
1.70(±0.05) − 3.1(±0.5) × 10−5 × SSN(41)2

)2
. (13)

We also studied the correlation between cycle amplitude and geomagnetic activity, which is
known to be a good precursor for the sunspot cycle amplitude. We tested various different quantities
calculated from the extended homogenized geomagnetic aa index. We found that the best predictor
for the cycle amplitude for odd sunspot cycles is given by the maximum average September-October
aa3 value within the 3-year window extending backward from the sunspot minimum. Figure 8 shows
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Fig. 7. Dependence of A, B and C parameters on 13-month smoothed sunspot number 41 months
before the sunspot minimum (SSN(41)2). Blue dots (red squares) indicate odd (even) numbered
cycles. The cycle numbers have been further indicated beside all points. The red lines depict the
linear fits to even numbered cycles.

the relationship between the cycle amplitude and this geomagnetic activity measure separately for
the odd cycles (blue) and even cycles (red). The yellow line indicates the best linear fit of

A = 130(±7) + 0.0036(±0.0004) ×max[0,3y]

(
aa3

Sep-Oct

)
. (14)

The linear correlation coefficient between the odd cycle amplitude and maximum aa3
Sep-Oct is

0.981 (p < 9 × 10−5). One can also see from Figure 8 that the corresponding relation for the even
cycles is much worse, but still statistically significant (correlation 0.76, p = 0.027). It should be
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Fig. 8. Relationship between cycle amplitude A and maximum September-October aa3 from a 3-
year window before SSN minimum. The blue points indicate odd cycles and red squares the even
cycles. The blue line indicates the linear fit to the odd cycles. The green circle indicates the estimated
amplitude for cycle 25.

noted though, that trying different quantities calculated from the aa index one can obtain higher
correlations for the even cycles as well, but it seems that none of such correlations exceeds the
extremely good correlation between even cycle amplitude and SSN(41) found above.

We also evaluated the correlation between the cycle amplitude and the geomagnetic precursor
defined above as a function of time lag counted from the sunspot minimum preceding the cycle.
I.e., instead of taking the maximum aa3

Sep-Oct in a 3-year window ending at the cycle minimum
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Fig. 9. Correlation coefficient between cycle amplitude A and lagged maximum monthly
September-October aa3 within a 3 year window. Blue (red) curve indicates the odd (even cycles)
and the correspondingly colored regions indicate the 95% confidence limits for the correlation co-
efficients.

the window was shifted backward in time by varying lags. The resulting correlations are shown in
Figure 9 separately for odd (blue) and even (red) cycles. One can see that the highest correlations
for odd cycles are indeed found up to 16 months before the cycle minimum. There is a drop in
correlation between 16-55 months before minimum but the correlation then rises again and remains
rather higher (about 0.8) between 55-100 months before the SSN minimum. Note however, that
this does not imply a longer lead time for prediction, since the timing of the SSN minimum is still
needed to determine the precursor. Figure 9 also shows that the correlation for even cycles is clearly
much lower than for the odd cycles at practically all lags. However, because of the somewhat limited
number of data points the statistical 95% confidence limits for the correlations are rather large. Even
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though there are indications for systematically higher correlation for the odd cycles, there is no firm
evidence that the correlations are statistically significantly different for the even and odd cycles.

The specific recipe of calculating the geomagnetic activity based precursor for odd cycles was
found by trial and error, manually testing a few tens of different (rather random) possibilities. This
raises the question of whether the found precursor is statistically significantly better than some
other, perhaps more common, choice like a mere the average aa index in the year of sunspot min-
imum. We tested the possibility of randomly obtaining a geomagnetic activity based precursor as
good as the one found above. This was done by generating 104 random geomagnetic precursor time
series by varying the calendar months from which aa index is taken (2 random calendar months),
the length of the time window (randomly selected between 1 and 5 years) and the exponent assigned
for the aa index (randomly selected between 1 to 3). In addition we randomly varied whether we
take the maximum of the yearly values within the time window (as we did for the chosen precursor)
or the average. For each such randomly generated precursor we calculated the correlation between
the precursor and the following cycle amplitude as a function of lag up to 11 years and found the
maximum correlation. This procedure simulates the act of randomly choosing a recipe for deter-
mining the precursor and finding the maximal correlation over all these lags. Finally, we randomly
grouped the remaining correlations into groups of 10 values and determined the maximum correla-
tion in each group. This simulated the act of testing 10 random precursors and choosing the one that
gives the maximal correlation at some lag. Now, comparing the correlation coefficient (0.981) for
the precursor used above in Figures 8 and 9 to the maximal correlations of these randomly generated
precursors in shows that there is only a probability of less than 4.5% to randomly obtain a correla-
tion higher than 0.981. This indicates that the recipe for the geomagnetic precursor we have chosen
for the odd cycles is indeed statistically significant by 95% significance level. We also compared the
geomagnetic precursor found above to a more commonly used geomagnetic precursor, which is the
annual average of the aa index at the solar minimum, for which the correlation with the following
cycle amplitude is 0.834. The correlation for our precursor was 0.981 and the difference of it from
0.834 is statistically highly significant (p-value for the difference is about 0.0007).

The length of the sunspot cycle is also an interesting and important quantity. However, it is
difficult to estimate from the predicted sunspot cycle curve because typically the SSN does not
drop to zero at the end of the cycle. We studied the association of the cycle length and the four
cycle parameters, but found no strong relationships, which would allow one to estimate the length
of the cycle based on the parameters of the same cycle. However, we found that the length of
the cycle seems to significantly correlate with the ratio of D and C parameters (i.e., D/C) of the
previous cycle. This relationship is shown in Figure 10. The correlation coefficient between D/C of
the previous cycle and length of the current cycle is 0.66 (p = 5.7 × 10−4) and is statistically very
significant. There are three cycles (6, 13 and 23) which are clear outliers. Excluding these cycles
yields an even higher and more significant correlation of 0.88 (p = 2.6 × 10−7). We note that these
correlations are both significantly higher than, e.g., the correlation between the cycle length and the
amplitude of the same cycle (about -0.5) (Wolf, 1861; Petrovay, 2020).

The yellow line in Figure 10 shows the linear fit excluding the cycles 6, 13 and 23. The equation
for this fit is

Li = 9.2(±0.4) + 1.5(±0.3)
Di−1

Ci−1
, (15)
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Fig. 10. Relationship between the cycle length and the D/C ratio of the previous cycle. The numbers
of each data point refer to the current cycle. The blue points (red squares) correspond to odd (even)
cycles and the green point to the estimated length of the cycle 25. The yellow line indicates the
linear fit excluding the three cycles 6, 13 and 23.

where Li is the length of cycle i in years and Di−1 and Ci−1 refer to the parameters of previous cycle
i − 1.

6. Prediction of sunspot cycles

6.1. Cross-validated predictions for past cycles and prediction for cycle 25

Based on the discussion above we can predict the sunspot cycle once the time of the sunspot min-
imum starting the new cycle is known. We use the 3-parameter description (A, B and C) for the
sunspot cycle of Eqs. 4-5. Parameter D has been eliminated using Eq. 6. For the even sunspot
cycles we directly estimate the three A, B and C parameters with SSN(41)2 as shown in Figure 7.
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For the odd cycles we first estimate the cycle amplitude A from the geomagnetic precursor as
shown in Figure 8 and then estimate B and C using the linear relationships for the odd cycles given
depicted in Figures 4 and 5 respectively.

Using this approach we predicted past even sunspot cycles starting from cycle 2 and each odd
sunspot cycle starting from cycle 11. We predicted each cycle separately with the so-called leave-
one-out cross validation method. This means that when predicting the i:th cycle all the fits between
different parameters and precursor values discussed above were determined by using data from all
other cycles except the i:th cycle. Therefore, the fitted relationships between the parameters and
precursors (Eqs. 8, 10, 11, 12, 13, 14) change from one predicted cycle to the next. This variability
in the model parameters together with the residual variability incorporates the total prediction un-
certainty of the model. It is important to note that the numerical values in Eqs. 11, 12 and 13 for
A, B and C of even cycles and in Eqs. 14, 8 and 10 for A, B and C of odd cycles as well as their
standard errors correspond to the fitted values when all available sunspot cycles are used in the fit.
These values are therefore appropriate for prediction of sunspot cycles from cycle 25 onward.

An important step in applying the cross-validation method is to estimate the prediction error of
the model. Therefore, when proceeding through all the past cycles 1-24 (excluding odd cycles 1, 3,
5, 7 and 9, for which no geomagnetic precursor could be determined) we obtained the residuals of
the 13-month smoothed SSN3/4 values and the corresponding predicted values each time neglecting
the cycle to be predicted as

r = SSN3/4 − SSN3/4

pred. (16)

The exponent of 3/4 in the above equation was used because the residuals calculated this way
were more homoscedastic, i.e., the residual variance was more uniform over different values of
SSN compared to regular residuals in linear scale (exponent of 1 in Eq. 16). We then used the
collection of residuals from Eq. 16 to generate a spread of possible sunspot number predictions for
the i:th predicted cycle. This was done by bootstrapping 105 values for the residuals (i.e., randomly
resampling with replacement from the collection of residuals) for each predicted monthly sunspot
number value in the cycle. The residuals were added to the SSN3/4

pred values and the result was then

converted back to linear scale by the transformation

SSNk =

(
SSN3/4

pred + rk

)4/3
, (17)

where k = 1, 2, ..., 105, rk indicates the k:th bootstrapped residual and SSNk indicates the k:th pre-
dicted SSN value for a particular month. These 105 values form an ensemble of SSN predictions
for each monthly SSN value in the predicted cycle.

Figure 11 shows the predicted past cycles (green curves) and their uncertainty ranges (blue
shading) together with the 13-month smoothed sunspot number (black curve) and the optimal 4-
parameter model curves (red curves) as in Figure 2. The figure also shows the predicted curve for
cycle 25 (magenta curve) and as a comparison the cycle 25 prediction offered by the Space Weather
Prediction Center (https://www.swpc.noaa.gov/products/solar-cycle-progression). One can see that
the predicted past cycles are rather close to both the optimal 4-parameter model curves and the 13-
month smoothed sunspot number. Particularly noteworthy is the fact that the amplitude of all of the
predicted past cycles quite accurately matches the real amplitude of the sunspot cycles. This is true
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for the very small cycles 6, 12, 14 and 24 and also for the largest cycles, e.g., cycle 19. Furthermore,
by definition about 95% of the monthly values of the 13-month smoothed sunspot number are within
the 2-standard deviation uncertainty range of the predicted curve. This extremely good performance
of the past predictions gives strong reasons to believe that the prediction of the sunspot cycle 25 is
reliable as well.

Figure 12 shows a closeup of cycle 25 prediction in the same format as in Figure 11, but with
the addition of the monthly unsmoothed values of SSN also included as the thin black curve. Our
predicted curve peaks in May 2024 and the peak value of the cycle is 171±23 (1 standard deviation
uncertainty). Using Eq. 15 and the D and C parameters of cycle 24 the predicted length of cycle
25 is about 9.7 ± 1.9 years (2 standard deviation confidence interval). This indicates that the end
of cycle 25 is attained likely in September 2029 with the 2-standard deviation uncertainty range
extending from October 2027 to July 2031.

At the time of writing this paper the cycle 25 has already begun and the recorded SSN is already
significantly higher than the prediction offered by the SWPC. On the other hand, the recorded SSN
follows quite closely our predicted curve, which indicates that the cycle 25 will be considerably
stronger than cycle 24 and roughly the same size as cycle 23. There have also been a range of other
predictions for cycle 25. For example, Upton and Hathaway (2018) used advective flux transport
modeling to predict that cycle 25 amplitude will be about 95% of cycle 24 amplitude which would
make cycle 25 the weakest cycle in 100 years. Bhowmik and Nandy (2018), on the other hand,
used solar dynamo modeling to predict that cycle 25 would be slightly stronger (about 14%) than
cycle 24. Pesnell and Schatten (2018) used the SODA index (based on a combination of solar
polar magnetic field and solar F10.7 index) to predict an amplitude of 135±25 for cycle 25, i.e.,
slightly larger than cycle 24. Kumar et al. (2021) used various polar field precursors extracted,
e.g., from solar magnetograms, to predict a cycle amplitude of 126±3 for cycle 25. Kumar et al.
(2022) used the correlation between the rise rate of polar field and the amplitude of the next cycle to
predict an amplitude of 137±23 for cycle 25. Sarp et al. (2018) used non-linear time series modeling
approach to predict a clearly stronger cycle 25 with an amplitude of 154±12 peaking in early 2023.
Li et al. (2018) used statistical modeling to reach a similar prediction with a predicted amplitude
of 168.5±16.3 and peak of the cycle in October 2024. Both Sarp et al. (2018) and Li et al. (2018)
predictions are fairly close, but slightly lower than our prediction. A quite different prediction was
given by McIntosh et al. (2020), who used the timing of termination of toroidal bands of solar
activity to predict a rather strong cycle 25 with amplitude of 233±21. However, this prediction was
recently revised to an amplitude of 184±17 (McIntosh et al., 2022), which is in agreement with our
prediction when considering the ranges of uncertainty. Du (2022b) used the correlation between the
cycle rising rate and cycle amplitude to predict the cycle 25 based on the 2 years of data from the
beginning of the cycle. They predicted the cycle amplitude to be 135.5±33.2, which is somewhat
lower than our prediction, although not in complete disagreement given the uncertainty range. Penza
et al. (2021) found a correlation between the parameters describing the sunspot cycle shape of even
and subsequent odd cycles. Based on this they predicted the cycle 25 to be similar or slightly larger
than cycle 24. While the studies discussed above are only a subset of all predictions made for cycle
25 it seems that our prediction is clearly above the average in predicted cycle amplitude and also
clearly above the SWPC prediction issued by the Solar Cycle Prediction Panel.
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6.2. Attempt at predicting the cycle 26

Above we found that for even numbered cycles the 13-month smoothed sunspot number evaluated
41 months before the start of cycle provides an extremely good estimate for the amplitude and other
parameters of the cycle. This leads to an interesting question: how accurately could one use the
predicted cycle 25 SSN curve to provide a prediction of cycle 26? Evidently the uncertainty of such
a prediction would be rather large but we shall here attempt to make one also for cycle 26. The
first step is to evaluate how well the predicted SSN 41 months before the sunspot minima actually
correspond to the true values, which were used as a precursor for even cycles.

Figure 13 shows the relationship between the real and predicted 13-month smoothed SSN evalu-
ated 41 months before the minima that end each sunspot cycle. Both odd and even cycles seem to
adhere to the same overall linear relationship, which has a high correlation of 0.832 (p = 10−5). The
linear relationship is given by the equation

SSN(41)real = 20(±10) + 0.72(±0.12) × SSN(41)pred. (18)

Ideally there would be one-to-one relationship between the real and predicted values, but the mod-
eled SSN curves seem to systematically slightly underestimate (overestimate) small (large) SSN(41)
values. We can use this fit and its 95% prediction error limits (see Figure 13) to predict the SSN 41
months before the sunspot minimum that starts cycle 26. The timing of this minimum is determined
by the timing of the minimum that starts cycle 25 and the cycle 25 length evaluated above from Eq.
15. Once the SSN(41) value to be used as a precursor for cycle 26 is known we can use Eq. 11 to
estimate the cycle amplitude.

Because of the uncertainties associated to the length of cycle 25 and the scaling of predicted
SSN(41) according to Eq. 18 we evaluated the spread of possible cycle 26 amplitudes using a
Monte Carlo simulation having 104 rounds. In each round we randomly generated a value for the
length of the cycle 25 within the range of its uncertainty. This was then used to calculate the timing
of 41 months before the end of cycle 25 and the SSN value at that time using the predicted SSN
curve for cycle 25 (Figure 12). This value was then used to calculate a prediction for the cycle
amplitude using Eq. 11. The histogram of the Monte Carlo simulation results is shown in Figure
14. As expected the results indicate a quite a large uncertainty range covering practically all past
sunspot cycles. However, despite the large range of uncertainty some interesting and non-trivial
aspects are seen. The median of the results implies that cycle 26 would be even slightly stronger
than cycle 25. In fact, based on these results the probability that cycle 26 will be weaker than cycle
25 is only about 19%. The results also imply an even clearer difference to cycle 24, which was the
weakest cycle of the last 100 years. The probability that cycle 26 would be weaker than cycle 24 is
only 0.8%.

7. Discussion and conclusions

We have studied here the prediction of sunspot cycles paying particular emphasis on the differences
between odd and even numbered cycles. Our approach was to first parameterize the sunspot cycle
as an asymmetric 4-parameter Gaussian function, which was found to represent each sunspot cycle
extremely well. Several of the parameters were found to correlate, which allowed us to simplify
the representation of the sunspot cycles. Interestingly it was found that the correlations between the
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cycle parameters were significantly stronger in even cycles compared to the odd ones. For example
the well-known Waldmeier effect that cycle amplitude and its rise time are inversely correlated was
more strictly valid for even cycles. A similar finding for the Waldmeier effect was also reported, e.g.,
by Du (2022a) and Dikpati et al. (2008). This result implies that for some reason the even numbered
cycles possess a smaller dimensionality than odd numbered cycles. Such a systematic difference
between even and odd cycles may imply a connection to the more fundamental 22-year magnetic
Hale cycle of the Sun. Du (2022a) also found significant differences in the Waldmeier effect between
the two hemispheres with the southern hemisphere displaying the normal Waldmeier effect, which
is stronger in even cycles, while the northern hemisphere displayed an inverse-Waldmeier effect,
which is stronger in odd cycles. This implies that there may also be a connection between the
Waldmeier effect and the hemispheric asymmetry in the sunspot number.

Our approach to prediction of sunspot cycles is based on statistical precursors for the cycle pa-
rameters. Following Cameron and Schüssler (2007) we found that the 13-month smoothed sunspot
number evaluated 41 months before the sunspot minimum that begins a cycle, SSN(41), is on aver-
age a fair predictor for the next cycle when considering all sunspot cycles. However, we found that
this relation is much stronger for even cycles than for odd cycles, for which the SSN(41) could not
be very accurately used as a predictor. The advantage of SSN(41) precursor is that we can predict
for even cycles all the cycle parameters (which correlate well with the amplitude) quite accurately.
Cameron and Schüssler (2007) explained the tendency of past SSN to correlate with the next cycle
amplitude as a result of overlapping sunspot cycles. While the past cycle is still declining the new
cycle begins. Because of the Waldmeier effect the stronger the new cycle will be the faster it will
rise to the maximum and the earlier the intersection time of the old and the new cycle is attained.
The earlier the intersection time, the higher the SSN 41 months earlier in the declining phase of the
previous cycle. The fact that this connection is here found to be more strictly valid for even cycles
arises because of the fact that the Waldmeier effect is also tighter in even cycles. The question of
why the Waldmeier effect is different in even and odd cycles is still open and should be investigated
in future studies.

For odd cycles we found that the maximum Sep-Oct geomagnetic aa index within 3 years pre-
ceding the sunspot minimum that begins the cycle is an extremely good precursor for the cycle
amplitude. It has been long recognized that geomagnetic activity close to solar minimum reflects
the strength of the open solar flux, which is at these times connected to the poloidal magnetic flux
extending from the Sun’s polar coronal holes. It is curious, however, that the best precursor for odd
cycles was found to be connected to geomagnetic activity close to the fall equinox. Some other
past studies have used geomagnetic activity averaged in other some ways over different periods of
time and found good correlations to the next cycle amplitude. While our Sep-Oct aa precursor is
probably not statistically significantly better than some of these other measures there might be a
physical reason for the preference of Sep-Oct season.

It is known that geomagnetic activity has strong seasonal variation, which is largely due to the
Russell-McPherron (RMP) effect (Russell and McPherron, 1973; Lockwood et al., 2020). The RMP
effect describes the fact that interplanetary magnetic field (IMF), which is oriented along the so-
lar equatorial plane, projects onto the Z-axis of the GSM coordinate system close to the fall and
spring equinoxes and thereby may enhance energy input from the solar wind into the magneto-
sphere/ionosphere system. The RMP effect is also dependent on the polarity of the IMF so that
during fall (spring) equinox the IMF pointing away from (towards) the Sun enhances solar wind
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energy input and therefore leads into larger geomagnetic activity as well. Often both polarities of
the IMF are seen within a solar rotation but especially close to solar minima the heliospheric current
sheet is often flatter, which allows Earth to be more exposed to the magnetic polarity connected to
Sun’s northern (southern) pole in fall (spring) due to the Earth’s changing heliographic latitude over
the course of the year (Rosenberg and Coleman Jr., 1969). According to the 22-year Hale cycle the
northern solar pole has a positive magnetic polarity close to sunspot minima preceding odd cycles,
which leads to a dominance of away sector close to fall equinoxes (Hiltula and Mursula, 2007;
Vokhmyanin and Ponyavin, 2012). Furthermore, it has been shown that the heliospheric current
sheet is systematically tilted southward in the declining phase (Hiltula and Mursula, 2006), which
further enhances the dominance of the away sector in fall and decreases the dominance of the to-
ward sector in spring prior to odd cycles. Therefore, it is expected that also the geomagnetic activity
portrayed by the aa index is most sensitively proportional to the strength of the IMF (i.e., to open
solar magnetic flux connected to solar polar field) at these times. A detailed confirmation of this
interpretation is warranted, but out of the scope of this study.

In addition to cycle amplitude and other parameters we found a curious statistical relation be-
tween the length of the sunspot cycle and the ratio of D (cycle asymmetry) and C (time scale of
rising phase) of the preceding cycle. The fact that such properties of the preceding cycle somehow
are connected to the length of the next cycle again highlights the fundamental 22-year Hale cyclic-
ity of solar magnetism. While there is no physical explanation for this relationship at the moment
it can be statistically used to estimate the cycle length perhaps a bit more accurately than previous
metrics (Petrovay, 2020).

Using the found precursors we used cross-validation to test their prediction accuracy by predict-
ing the past solar cycles. For all past cycles the predictions were very close to the real sunspot cycles
thereby giving strong confidence that the prediction of future cycles would be equally successful.
We proceeded to predict the odd cycle 25 and found that its amplitude will be 171 ± 23, thus about
1.6 times stronger than cycle 24. There are already clear indications that our prediction closely fol-
lows the progression of the cycle 25 which has already started at the time of writing this paper. It
is also noteworthy that the prediction issued by the Solar Cycle 25 Prediction Panel at the SWPC
suggests cycle 25 to be similar to cycle 24, which is already now clearly below the current sunspot
levels.

Using the predicted cycle 25 and the fact that SSN(41) could be used as a predictor for the even
cycles we provided a rough prediction also for cycle 26. As expected the uncertainty range of the
prediction was rather large, but based on the results it seems rather likely that the cycle 26 will
be stronger than both cycles 24 and 25. Therefore, we find no evidence for an imminent drop of
solar activity to a grand solar minimum as suggested by several past studies (e.g. Abreu et al.,
2008; Owens et al., 2011; Lockwood et al., 2011). Overall these results display the capability to
predict even and odd cycles using different precursors with rather high accuracy. The results also
clearly indicate a connection between odd-even pairs of sunspot cycles and highlight the 22-year
Hale cyclicity. Accordingly, the Hale cyclicity should be considered more carefully also by more
physically motivated dynamo and flux transport prediction models of solar activity.
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Fröhlich, C., 2012. Total Solar Irradiance Observations. Surv Geophys, 33, 453–473. 10.1007/s10712-011-
9168-5. 1

Gnevyshev, M., and A. Ohl, 1948. On the 22-year cycle of solar activity. Astron Zh, 25, 18–20. 1

Gray, L. J., J. Beer, M. Geller, J. D. Haigh, M. Lockwood, et al., 2010. Solar Influences on Climate. Reviews
of Geophysics, 48(4), RG4001. 10.1029/2009RG000282. 1

Hathaway, D., 2009. Solar Cycle Forecasting. Space Sci Rev, 144, 402–412. 10.1007/s11214-008-9430-4. 1

23



Asikainen and Mantere: Prediction of sunspots

Hathaway, D., R. Wilson, and E. Reichmann, 1994. The shape of the sunspot cycle. Sol Phys, 151, 177–190.
10.1007/BF00654090. 3, 3, 2

Hiltula, T., and K. Mursula, 2006. Long dance of the bashful ballerina. Geophysical Research Letters, 33(3).
10.1029/2005GL025198. 7

Hiltula, T., and K. Mursula, 2007. HMF sectors since 1926: Comparison of two ground-based data sets.
Advances in Space Research, 40(7), 1054–1059. 10.1016/j.asr.2007.01.068. 7

Kakad, B., and A. Kakad, 2021. Forecasting peak smooth sunspot number of solar cy-
cle 25: A method based on even-odd pair of solar cycle. Planetary and Space Science,
209, 105,359. Https://doi.org/10.1016/j.pss.2021.105359, URL https://www.sciencedirect.com/
science/article/pii/S0032063321001987. 1

Karak, B., 2023. Models for the long-term variations of solar activity. Living Rev Sol Phys, 20(3).
10.1007/s41116-023-00037-y. 1

Karak, B. B., and A. R. Choudhuri, 2011. The Waldmeier effect and the flux trans-
port solar dynamo. Monthly Notices of the Royal Astronomical Society, 410(3), 1503–
1512. 10.1111/j.1365-2966.2010.17531.x, https://academic.oup.com/mnras/article-pdf/410/
3/1503/2847622/mnras0410-1503.pdf, URL https://doi.org/10.1111/j.1365-2966.2010.
17531.x. 4

Karak, B. B., S. Mandal, and D. Banerjee, 2018. Double Peaks of the Solar Cycle: An Explanation from
a Dynamo Model. The Astrophysical Journal, 866(1), 17. 10.3847/1538-4357/aada0d, URL https:
//dx.doi.org/10.3847/1538-4357/aada0d. 3

Krieger, A. S., A. F. Timothy, and E. C. Roelof, 1973. A coronal hole and it’s identification as the source of
a high velocity solar wind stream. Sol. Phys., 29, 505–525. 10.1007/BF00150828. 1

Krivova, N., S. Solanki, and Y. Unruh, 2011. Towards a long-term record of solar total and spectral
irradiance. Journal of Atmospheric and Solar-Terrestrial Physics, 73(2), 223–234. Space Climate,
10.1016/j.jastp.2009.11.013. 1

Kumar, P., A. Biswas, and B. B. Karak, 2022. Physical link of the polar field buildup with the
Waldmeier effect broadens the scope of early solar cycle prediction: Cycle 25 is likely to be slightly
stronger than Cycle 24. Monthly Notices of the Royal Astronomical Society: Letters, 513(1), L112–
L116. 10.1093/mnrasl/slac043, https://academic.oup.com/mnrasl/article-pdf/513/1/L112/
43754087/slac043.pdf, URL https://doi.org/10.1093/mnrasl/slac043. 1, 6.1

Kumar, P., M. Nagy, A. Lemerle, B. B. Karak, and K. Petrovay, 2021. The Polar Precursor Method for
Solar Cycle Prediction: Comparison of Predictors and Their Temporal Range. The Astrophysical Journal,
909(1), 87. 10.3847/1538-4357/abdbb4, URL https://dx.doi.org/10.3847/1538-4357/abdbb4.
1, 6.1

Lanzerotti, L. J. Space Weather Effects on Technologies, 11–22. American Geophysical Union (AGU), 2001.
ISBN 9781118668351. 10.1029/GM125p0011. 1

Leamon, R., S. W. McIntosh, and A. Title, 2022. Deciphering solar magnetic activity: The solar cycle clock.
Frontiers In Astronomy And Space Sciences, 9, 14. 10.3389/fspas.2022.886670. 1

24

https://www.sciencedirect.com/science/article/pii/S0032063321001987
https://www.sciencedirect.com/science/article/pii/S0032063321001987
https://academic.oup.com/mnras/article-pdf/410/3/1503/2847622/mnras0410-1503.pdf
https://academic.oup.com/mnras/article-pdf/410/3/1503/2847622/mnras0410-1503.pdf
https://doi.org/10.1111/j.1365-2966.2010.17531.x
https://doi.org/10.1111/j.1365-2966.2010.17531.x
https://dx.doi.org/10.3847/1538-4357/aada0d
https://dx.doi.org/10.3847/1538-4357/aada0d
https://academic.oup.com/mnrasl/article-pdf/513/1/L112/43754087/slac043.pdf
https://academic.oup.com/mnrasl/article-pdf/513/1/L112/43754087/slac043.pdf
https://doi.org/10.1093/mnrasl/slac043
https://dx.doi.org/10.3847/1538-4357/abdbb4


Asikainen and Mantere: Prediction of sunspots

Leighton, R., 1969. A magneto-kinematic model of the solar cycle. Astrophys. J., 156(1). 10.1086/149943.
1

Li, F., D. Kong, J. Xie, N. Xiang, and J. Xu, 2018. Solar cycle characteristics and their application
in the prediction of cycle 25. Journal of Atmospheric and Solar-Terrestrial Physics, 181, 110–115.
10.1016/j.jastp.2018.10.014. 6.1

Lockwood, M., A. Chambodut, L. A. Barnard, M. Owens, E. Clarke, and V. Mendel, 2018a. A homogeneous
aa index: 1. Secular variation. J. Space Weather Space Clim., 8, A53. 10.1051/swsc/2018038. 2

Lockwood, M., I. D. Finch, A. Chambodut, L. Barnard, M. Owens, and E. Clarke, 2018b. A homogeneous aa
index: 2. Hemispheric asymmetries and the equinoctial variation. J. Space Weather Space Clim., 8, A58.
10.1051/swsc/2018044. 2, 2

Lockwood, M., H. Nevanlinna, L. Barnard, M. J. Owens, R. G. Harrison, A. P. Rouillard, and C. J. Scott,
2014. Reconstruction of geomagnetic activity and near-Earth interplanetary conditions over the past 167
yr - Part 4: Near-Earth solar wind speed, IMF, and open solar flux. Annales Geophysicae, 32(4), 383–399.
10.5194/angeo-32-383-2014. 1, 2

Lockwood, M., M. J. Owens, L. Barnard, C. J. Davis, and F. Steinhilber, 2011. The persistence of solar
activity indicators and the descent of the Sun into Maunder Minimum conditions. Geophysical Research
Letters, 38(22). 10.1029/2011GL049811. 7

Lockwood, M., M. J. Owens, L. Barnard, C. Haines, C. Scott, K. A. McWilliams, and J. C. Coxon, 2020.
Semi-annual, annual and Universal Time variations in the magnetosphere and in geomagnetic activity: 1.
Geomagnetic data. J. Space Weather Space Clim., 10, 23. 10.1051/swsc/2020023. 7

Lockwood, M., R. Stamper, and M. Wild, 1999. A doubling of the Sun’s coronal magnetic field during the
past 100 years. Nature, 399, 437–439. 10.1038/20867. 1

McIntosh, S., S. Chapman, R. Leamon, R. Egeland, and N. W. Watkins, 2020. Overlapping Magnetic
Activity Cycles and the Sunspot Number: Forecasting Sunspot Cycle 25 Amplitude. Sol Phys, 295(163).
10.1007/s11207-020-01723-y. 6.1

McIntosh, S. W., R. J. Leamon, and R. Egeland, 2022. Deciphering Solar Magnetic Activity: The (Solar)
Hale Cycle Terminator of 2021. 10.48550/ARXIV.2209.10577. 6.1

Nagovitsyn, Y., and V. Ivanov, 2023. Solar Cycle Pairing and Prediction of Cycle 25. Sol Phys, 298, 37.
10.1007/s11207-023-02121-w. 1, 5

Nandy, D., 2021. Progress in Solar Cycle Predictions: Sunspot Cycles 24–25 in Perspective. Sol Phys,
296(54). 10.1007/s11207-021-01797-2. 1

Nevanlinna, H., 2004. Results of the Helsinki magnetic observatory 1844-1912. Annales Geophysicae, 22(5),
1691–1704. 10.5194/angeo-22-1691-2004. 2

Ohl, A., 1966. Forecast of sunspot maximum number of cycle 20. Soln Dannye, 12(84). 10.1088/0004-
6256/138/6/1998. 1

Owens, M. J., M. Lockwood, L. Barnard, and C. J. Davis, 2011. Solar cycle 24: Implications
for energetic particles and long-term space climate change. Geophysical Research Letters, 38(19).
10.1029/2011GL049328. 7

25



Asikainen and Mantere: Prediction of sunspots

Parker, E., 1955. Hydromagnetic dynamo models. Astrophys. J., 122(293). 10.1086/146087. 1

Penza, V., F. Berrilli, L. Bertello, M. Cantoresi, and S. Criscuoli, 2021. Prediction of Sunspot and Plage
Coverage for Solar Cycle 25. The Astrophysical Journal Letters, 922(1). 10.3847/2041-8213/ac3663. 1,
6.1

Pesnell, W., 2012. Solar Cycle Predictions (Invited Review). Sol Phys, 281, 507–532. 10.1007/s11207-012-
9997-5. 1

Pesnell, W., and K. Schatten, 2018. An Early Prediction of the Amplitude of Solar Cycle 25. Sol Phys,
293(112). 10.1007/s11207-018-1330-5. 6.1

Petrovay, K., 2020. Solar cycle prediction. Living Rev Sol Phys, 17(2). 10.1007/s41116-020-0022-z. 1, 5, 5,
5, 7

Richardson, I., and H. Cane, 2012. Near-earth solar wind flows and related geomagnetic activity during more
than four solar cycles (1963-2011). J. Space Weather Space Clim., 2, A02. 10.1051/swsc/2012003. 1

Rosenberg, R. L., and P. J. Coleman Jr., 1969. Heliographic latitude dependence of the dominant polarity
of the interplanetary magnetic field. Journal of Geophysical Research (1896-1977), 74(24), 5611–5622.
10.1029/JA074i024p05611. 7

Russell, C. T., and R. L. McPherron, 1973. Semiannual variation of geomagnetic activity. Journal of
Geophysical Research (1896-1977), 78(1), 92–108. 10.1029/JA078i001p00092. 7

Salminen, A., T. Asikainen, V. Maliniemi, and K. Mursula, 2020. Comparing the effects of solar-
related and terrestrial drivers on the northern polar vortex. J. Space Weather Space Clim., 10, 56.
10.1051/swsc/2020058. 1

Sarp, V., A. Kilcik, V. Yurchyshyn, J. P. Rozelot, and A. Ozguc, 2018. Prediction of solar cycle 25: a non-
linear approach. Monthly Notices of the Royal Astronomical Society, 481(3), 2981–2985. 10.1093/mn-
ras/sty2470. 6.1

Schatten, K. H., P. H. Scherrer, L. Svalgaard, and J. M. Wilcox, 1978. Using Dynamo Theory to
predict the sunspot number during Solar Cycle 21. Geophysical Research Letters, 5(5), 411–414.
10.1029/GL005i005p00411. 1

Schwabe, H., 1844. Sonnen — Beobachtungen im Jahre 1843. Astronomische Nachrichten, 21(15), 234–235.
10.1002/asna.18440211505. 1

SILSO World Data Center, 1749-2023. The International Sunspot Number. International Sunspot Number
Monthly Bulletin and online catalogue. URL http://www.sidc.be/silso/. 2

Stewart, J. Q., and H. A. A. Panofsky, 1938. The Mathematical Characteristics of Sunspot Variations. ApJ,
88, 385. 10.1086/143994. 3

Takalo, J., 2021. Separating the aa-index into Solar and Hale Cycle Related Components Using Principal
Component Analysis. Sol Phys, 296, 80. 10.1007/s11207-021-01825-1. 1

Takalo, J., and K. Mursula, 2018. Principal component analysis of sunspot cycle shape. A&A, 620, A100.
10.1051/0004-6361/201833924. 1

26

http://www.sidc.be/silso/


Asikainen and Mantere: Prediction of sunspots

Toriumi, S., C. Schrijver, L. Harra, H. Hudson, and K. Nagashima, 2017. Magnetic properties of solar active
regions that govern large solar flares and eruptions. ApJ, 834(56). 10.3847/1538-4357/834/1/56. 1

Upton, L. A., and D. H. Hathaway, 2018. An Updated Solar Cycle 25 Prediction With AFT: The Modern
Minimum. Geophysical Research Letters, 45(16), 8091–8095. 10.1029/2018GL078387. 6.1

Vokhmyanin, M. V., and D. I. Ponyavin, 2012. Inferring interplanetary magnetic field polarities from geo-
magnetic variations. Journal of Geophysical Research: Space Physics, 117(A6). 10.1029/2011JA017060.
7

Volobuev, D., 2009. The Shape of The Sunspot Cycle: A One-Parameter Fit. Sol Phys, 258, 319–330.
10.1007/s11207-009-9429-3. 3

Waldmeier, M., 1935. Neue Eigenschaften der Sonnenfleckenkurve. Astronomische Mitteilungen der
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Fig. 11. Predicted past sunspot cycles as well as the prediction for cycle 25. The black curve shows
the original 13-month smoothed SSN. The red curves show the optimal 4-parameter fits to the SSN
cycles. The green curves show the sunspot cycles predicted using the precursor values. The dark
and light blue shadings show the 1- and 2-standard deviation ranges based on the ensemble of
SSN predictions. The magenta curve shows the prediction for cycle 25 and the dashed purple curve
(and yellow uncertainty range) shows the cycle 25 prediction according to the international sunspot
prediction panel obtained from the Space Weather Prediction Center.
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Fig. 12. Closeup of the sunspot prediction for cycle 25. The thick (thin) black curve shows the origi-
nal 13-month smoothed (unsmoothed monthly) SSN. The red curves show the optimal 4-parameter
fits to the SSN cycles. The green curves show the sunspot cycles predicted using the precursor
values. The dark and light blue shadings show the 1- and 2-standard deviation ranges based on
the ensemble of SSN predictions. The magenta curve shows the prediction for cycle 25 and the
dashed purple curve (and yellow uncertainty range) shows the cycle 25 prediction according to the
international sunspot prediction panel obtained from the Space Weather Prediction Center.
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Fig. 13. Relationship between the real and predicted 13-month smoothed SSN evaluated 41 months
before the minima that end each sunspot cycle. The blue dots (red squares) indicate odd (even)
cycles and the yellow line is a linear fit to all cycles.
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Fig. 14. Histogram of predicted cycle 26 amplitudes based on a Monte Carlo simulation with 104

repetitions. For reference the dashed vertical lines show the cycle amplitudes for cycle 19, 24 and
predicted 25. The red dashed line indicates the median of the simulated values.
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